This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Skip to the content

[IOP] A community website from IOP Publishing

environmentalresearchweb blog

Going offshore (part 1)

Offshore wind energy is booming, with for once the UK in the lead, having installed over 1000 Megawatts (MW) of offshore wind farm generation capacity. Denmark is second in the league table, with 640MW in place, followed by the Netherlands at 250MMW and Sweden at 164MW. But several other EU countries are moving ahead. Belgium, Finland and Ireland all have working offshore projects, while Germany has started up its first large offshore project – it wants 10,000 MW by 2020. France has announced 10 zones for offshore projects off its Atlantic and Mediterranean coasts – it wants to have 6,000MW in place by 2020. However the UK seems likely to stay in the lead – it aims to install up to 40,000MW by around 2020, maybe more.

That’s not to say there have not been problems. Costs have risen, in part because of the increased cost of materials like steel, which in turns reflects the increased costs of conventional energy. And there have been teething problems with some of the designs. A minor fault in the design of the transitional piece which connects the tower to the monopile foundations of the newer machines has been detected, which has resulted in movement of a few centimetres in a number of turbines. Fortunately it is not thought that there is any safety risk or threat to service or output and it’s evidently planned to deal with the as part of the usual rolling programmes of operation and maintenance, with any repairs that are necessary being carried out turbine by turbine, so that there should be no impact on the operation of the rest of the wind farm. The fault evidently does not effect earlier offshore designs.

Clearly issues like this will have to be taken into account in the design of new much larger 10MW machines now being developed. However, one of the newer designs, the 10MW SWAY floating turbine being developed in Norway, won’t face quite the same problem – it’s actually designed to tilt by 5–8 degrees in the wind.

Outside the EU, in 2009 China installed a 3MW offshore turbine, the first unit of a 100MW project. And, after nearly 10 years of sometimes heated debate, the Cape project off Nantucket Sound in New England has at last got the go ahead. It will be the USA’s first offshore wind farm – with 130 turbines. But many others are being considered, including floating versions for use in deeper water. For example, researchers at the Worcester Polytechnic Institute (WPI) have a $300,000 grant from the US National Science Foundations for a three-year on floating wind turbine platforms.

The EU is of course well advanced in this field – with for example the Norwegian Sway device mentioned above, Statoil Hydro’s Hywind and the UK’s 10MW Nova project. There is also the novel floating Poseidon wave and wind platform system being developed in Denmark – a 10MW version is now planned.

But a report released by the US Dept of Energy in 2008, says the 28 US states that have coastlines consume about 80% of all the electricity the US produces, so maybe they’ll have an incentive to push ahead too.

As in the EU, the idea of an offshore supergrid to link up offshore wind projects has also been mooted in the US. Researchers from the University of Delaware and Stony Brook University say that linking Atlantic Coast offshore wind parks with high-voltage direct current (HVDC) cables under the ocean would substantially smooth out the fluctuations. As a fix for intermittency, they say “transmission is far more economically effective than utility-scale electric storage”.

Currently there are proposals for five offshore wind farms from Delaware to Massachusetts. As plans stand, each would have separate underwater transmission cables linked into the nearest state electric grid. But the report suggest a single, federal offshore Atlantic Transmission Grid would be a better bet. Co-author Brian Colle said: “A north-south transmission geometry fits nicely with the storm track that shifts northward or southward along the U.S. East Coast on a weekly or seasonal time scale. Because then at any one time a high or low pressure system is likely to be producing wind (and thus power) somewhere along the coast.”

Offshore wind isn’t the only offshore option. The use of wave energy and tidal streams is also moving ahead around the world, with once again the EU, and the UK especially, in the lead. For example 1,200 MW of wave and tidal current turbine project have just be given the go ahead in Scotland. But US company Ocean Power Technologies (OPT) has been making progress winning contracts for its Power Buoy wave device including one from the Australian government.

Tidal current turbine projects are also developing around the world, for example Ireland’s Open Hydro has linked with Nova Scotia Power to deploy a 1MW tidal turbine in the Bay of Fundy. And the UK’s Marie Current Turbine Ltd is to install a 1.2MW Seagen there too. Meanwhile, South Korea is pushing ahead with a range of ambitious tidal projects, over 2,000MW in all, while has reported that Israeli marine renewables company SDE Energy recently completed construction of a 1MW wave power plant in China. The $700,000 plant consists of a floating buoy attached to a breakwater. It’s been installed near the city of Dong Ping in Guangzhou province. SDE is also reportedly in the final stages of negotiations over other projects to be built near Zhanjiang City and in the province of Hainan. SDE has talked in terms of ultimately having 10GW of wave energy systems along the Chinese coastline.

It looks like offshore renewables could really become a significant new option.
The big advantage of going offshore is that there is less visual impact. The energy potential is also large – wind speed are usually higher and less variable, and for tidal flow systems, there is a lot more energy in moving water than in moving air. But there may be some environmental impacts (e.g. on fish and sea mammals), something that the device developers are very keen to avoid by careful location and a sensitive design.

However, it is argued that relatively slowly rotating free-standing tidal rotors, or wave energy buoys or platforms, should not present many hazards, while it seems that offshore wind turbine foundations can provide a substrate for a range of sea-life to exploit. As with on-land wind turbines, birds can be at risk of collision with moving wind turbine blades, but observations have suggested that sea birds avoid offshore wind turbines.

Even so, environmental and wildlife impact issues need attention, for example in terms of influencing the choice of location and layout. Overall, a precautionary approach has been adopted: developers have to submit detailed Environmental Impact Statements and there is much research on specific impacts.

But most of the problems seem to be during the installation process (e.g. noise impacts when driving piles for wind-turbine foundations and disruption during cable laying). Once installed, there seem to be fewer problems, other than possibly sea-bed sediment movements, although navigation hazards have led to some debates.

  • A new UK report co-ordinated by the Public Interest Research Group puts the total practical UK resource for offshore wind, wave and tidal power as 2131TWh p.a. (six times current UK electricity use: I’ll be looking at that in a subsequent blog.
Reblog this post [with Zemanta]

This entry was posted in Renew your energy and tagged , , . Bookmark the permalink.
View all posts by this author 

Leave a comment

Your e-mail address will not be published.


  • Comments should be relevant to the article and not be used to promote your own work, products or services.
  • Please keep your comments brief (we recommend a maximum of 250 words).
  • We reserve the right to remove excessively long, inappropriate or offensive entries.

Show/hide formatting guidelines

Tag Description Example Output
<a> Hyperlink <a href="">google</a> google
<abbr> Abbreviation <abbr title="World Health Organisation" >WHO</abbr> WHO
<acronym> Acronym <acronym title="as soon as possible">ASAP</acronym> ASAP
<b> Bold <b>Some text</b> Some text
<blockquote> Quoted from another source <blockquote cite="">IOP</blockquote>
<cite> Cite <cite>Diagram 1</cite> Diagram 1
<del> Deleted text From this line<del datetime="2012-12-17"> this text was deleted</del> From this line this text was deleted
<em> Emphasized text In this line<em> this text was emphasised</em> In this line this text was emphasised
<i> Italic <i>Some text</i> Some text
<q> Quotation WWF goal is to build a future <q cite="">
where people live in harmony with nature and animals</q>
WWF goal is to build a future
where people live in harmony with nature and animals
<strike> Strike text <strike>Some text</strike> Some text
<strong> Stronger emphasis of text <strong>Some text</strong> Some text